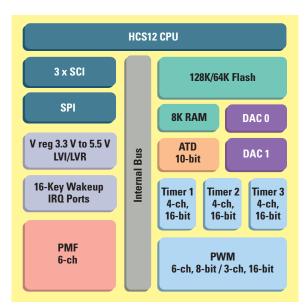
Freescale Semiconductor, Inc.


A FLASH MCU SOLUTION

MC9S12E128/E64 16-bit Microcontroller

TARGET APPLICATIONS

- Power Management Applications
- Industrial Controls
- Commercial Controls

The HCS12 Family of microcontrollers is the next generation of the highly successful 68HC12 architecture. Utilizing Motorola's industry-leading 0.25µ Flash, the E128 is part of a pin-compatible family that is planned to scale from 32 Kbytes to 512 Kbytes of Flash memory. The E128 provides an upward migration path from Motorola's 68HC08, 68HC11 and 68HC12 architectures for applications that need larger memory, more peripherals and higher performance.

FEATURES

BENEFITS

HIGH-PERFORMANCE 16-BIT HCS12 CPU CORE

- 25 MHz bus operation at 5 V for 40 nsec minimum instruction cycle time
- 16 MHz bus operation at 3.3 V for 62.5 nsec minimum instruction cycle time
- Opcode compatible with the 68HC11 and 68HC12
- C optimized architecture produces extremely compact code

ON-CHIP DEBUG INTERFACE

- Single-wire background debug mode
- On-chip trace buffer with nine flexible trigger modes and multiple hardware breakpoints
- Non-intrusive emulation
- Real-time emulation of MCU functions at full operating voltage and frequency range with no limitations like traditional emulators
- Bus state analysis without the expense of a traditional emulator
- Non-intrusive debugging through a single, dedicated pin helps eliminate the need and cost of cumbersome emulator cables
- View and change internal registers and memory while running application

· Flexibility to change code in the field

Reduces production programming cost

through ultra-fast programming

array usable for EE extension

Total program time for 128 Kbyte code is

No external high voltage or charge pump

Virtual EEPROM implementation, Flash

• Fast, easy conversion from analog inputs like temperature, pressure and fluid levels

to digital values for CPU processing

· Provides digital control capabilities of

· Efficient end-of-line programming

less than 5 sec

required

INTEGRATED THIRD-GENERATION FLASH MEMORY

•

•

- In-application re-programmable
- Self-timed, fast programming
 - Fast Flash Page Erase—20 msec (1024 bytes)
 - Can program 16 bits in 20 µsec while in burst mode
- 3.3 V Flash program/erase/read
- Flash Granularity—1024 byte Flash erase / 2 byte Flash program
- Flexible protection and security

10-BIT ANALOG-TO-DIGITAL CONVERTER

- One 16-channel A/D converter
- 7 µsec, 10-bit single conversion time, scan mode available

DIGITAL-TO-ANALOG CONVERTER

- Two 8-bit digital-to-analog converters (DAC)
- 8-bit resolution

CLOCK GENERATION MODULE WITH PLL

- Clock monitor with self clock mode in case of no external clock
- Programmable clock frequency with 1024 options ranging from divide by 16 to multiply by 64 from base oscillator
- Real-time interrupt
- Watchdog

Reliable, robust operation

external analog devices

- Provides high performance using low-cost reference crystals
- Reduces generated noise
- Reduces power consumption
- · Easily able to implement real-time clock
- For More Information On This Product, Go to: www.freescale.com

A FLASH MCU SOLUTION

MC9S12E128/E64

DATA SHEETS

S12ATD10B16CV2/D S12BDMV4/D	Analog to Digital: 10-bit, 16 Channel Background Debug Module
S12CPUV2/D	Central Processor Unit
S12CRGV4/D	Clock and Reset Generator
S12DAC8B1CV1/D	Digital-to-Analog Converter: 8-bit
S12DBGV1/D	Debug Module
S12FTS128KV1/D	128 Kbyte Flash EEPROM
S1211CV2/D	Inter IC Bus
S12INTV1/D	Interrupt
S12MEBIV3/D	Multiplexed Expanded Bus Interface
S12MMCV4/D	Module Mapping Control
S120SCV2/D	Oscillator
S12PIM9E128V1/D	Port Integration Module
S12PWM8B6CV1/D	Pulse Width Modulator: 8-bit, 6 Channel
S12PMF15B6CV1/D	Pulse Modulator with Fault Protection: 15-bit, 6 Channel
S12SCIV3/D	Serial Communications Interface
S12SPIV2/D	Serial Peripheral Interface
S12TIM16B4CV1/D	Timer: 16-bit, 4 Channel
S12VREG3V3V1/D	Voltage Regulator

DEVELOPMENT TOOLS

M68MULTILINK12	Universal HC12 / HCS12 in-circuit
	emulator, debugger and Flash
	programming through BDM interface
JSBMULTILINK12	USB version of M68MULTILINK12

APPLICATION NOTES

AN2287/D AN2304/D	HCS12 External Bus Design Implementation of a UDP/IP Stack on HCS12 Microcontrollers
AN2318/D	Using the I ² C Bus with HCS12 Microcontrollers
AN2408/D	Examples of HCS12 External Bus Design: A Companion Note to AN2287/D
AN2428/D	An Overview of the HCS12 ATD Module
AN2429/D	Interfacing to the HCS12 ATD Module
AN2438/D	ADC Definitions and Specifications

Freescale Semiconductor, Inc.

THREE FOUR-CHANNEL TIMERS

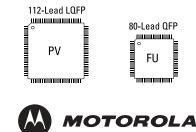
- Three four-channel 16-bit timers with each channel programmable for input capture or output compare
- Three 16-bit pulse accumulators with event counting or gated time accumulation modes

TWO PULSE WIDTH MODULATORS

- Six-channel, 8-bit or three-channel, 16-bit PWM with fault protection
 - Edge- or center-aligned PWM operationFault protection input
- Six-channel pulse width modulator with fault protection (PMF)
 - Three independent 15-bit counters with synchronous mode
- Complementary channel operation
- Programmable dead time insertion
- Integral reload rates from 1 to 16Four fault protection shut-down
- input pins
- Three current sense input pins

THREE SERIAL COMMUNICATIONS INTERFACES

- 8192 prescalar option
- Asynchronous communication between the MCU and a terminal, computer or a network of microcontrollers


- Efficiently implement motor control, battery charging or digital-to-analog functions
- Capable of controlling most motor types: AC induction motors (ACIM), both brushless (BLDC) and brush DC motors (BDC), swithced (SRM) and variable reluctance motors (VRM), and stepper motors.
- Exact baud rate matching
- ONE SERIAL PERIPHERAL INTERFACE
- Up to 6.25 Mbps
- High-speed synchronous communication between multiple MCUs or between MCU and serial peripherals
- INTER IC BUS (I²C)
- 256 clock rate options
- Provides a simple, efficient method of data exchange between devices
- Minimizes the need for large numbers of connections between devices and eliminates the need for an address decoder

UP TO 90 INPUT/OUTPUT (I/O) LINES

- Programmable pull-ups / pull-downs
- Dual drive capability
- Reduce system cost
- Able to tailor application for minimum EMC or high current loads

PART NUMBER	PACKAGE	TEMPERATURE RANGE
MC9S12E128CPV	112 LQFP	-40 to 85°C
MC9S12E64CPV	112 LQFP	-40 to 85°C
MC9S12E128CFU	80 QFP	-40 to 85°C
MC9S12E64CFU	80 QFP	-40 to 85°C
MC9S12E128MPV	112 LQFP	-40 to 125°C
MC9S12E64MPV	112 LQFP	-40 to 125°C
MC9S12E128MFU	80 QFP	-40 to 125°C
MC9S12E64MFU	80 QFP	-40 to 125°C

PACKAGE OPTIONS

Motorola and the stylized M Logo are registered in the U.S. Patent and Trademark Office. This product incorporates SuperFlash® technology licensed from SST. All other product or service names are the property of their respective owners. © Motorola, Inc. 2003

MC9S12E128FS/D For More Information On This Product, Go to: www.freescale.com

BENEFITS

Flexible, programmable timer system

Ν